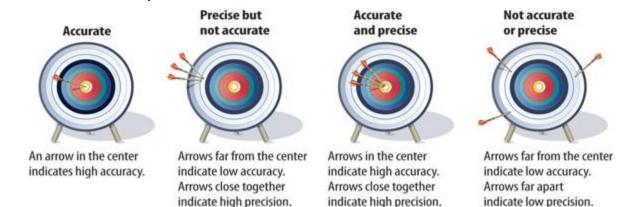
Scientific Explanations Lesson 2: Measurements and Scientific Tools

Description: a spoken or written summary of observations

- 2 types of descriptions
 - Qualitative descriptions: use your senses to describe observations
 - Sight, sound, smell, touch, taste
 - Color of a shirt
 - Quantitative description: use numbers and measurements to describe an observation
 - You need a description along with a label afterwards.
 - 70°C outside

Explanation: an interpretation of observations

International System of Units (SI): the internationally accepted system for measurement


• 7 Base units listed below

Quantity Measured	Unit	Symbol
Length	meter	m
Mass	kilogram	kg
Time	second	S
Electric Current	ampere	А
Temperature	Kelvin	К
Substance amount	mole	mol
Light intensity	candela	cd

• We will do conversions next year in Earth science

Precision and Accuracy:

- Accuracy: a description of how close a measurement is to an accepted or true value
- Precision: a description of how similar or close measurements are to each other

Mean, Median, Mode, and Range

- *Mean:* average most common
- *Median:* middle number
- *Mode:* number that appears most
- *Range:* greatest smallest numbers

Student Melting Point Data				
	Student A	Student B	Student C	
Trial 1	183.5°C	190.0°C	181.2°C	
Trial 2	185.9°C	183.3°C	182.0°C	
Trial 3	184.6°C	187.1°C	181.7°C	
Mean	184.7°C	186.8°C	181.6°C	

Which student was most accurate? Precise?

Measurement and Uncertainty:

- Measure how precise your instrument can measure
- We will focus on this more closely in Earth science.

Significant Digits: the number of digits in a measurement that are known with a certain degree of reliability.

- There are 4 rules.
 - Numbers 1-9 are considered significant

Example (number)	Significant Digits
12.345 kg	5
24.68 m	4

• Zeros between #1-9 are significant

Example (number)	Significant Digits
3.07 m	3
1,002 s	4

• Final zeros used after the decimal point are significant

Example (number)	Significant Digits
0.150 kg	3
18.0 m	3

• Zeros used solely for spacing the decimal point are not significant. The zeros indicate only the position of the decimal point.

Example (number)	Significant Digits
0.001 kg	1
50,600 s	3

Scientific Tools:

- <u>Science Journals</u> used to record descriptions, explanations, plans, and steps used in a scientific inquiry.
- <u>Balances</u> use a triple-beam balance or electric and is measured in kilograms (kg) or grams (g)
- <u>Thermometer</u> measured the temperature of substances. In the science classroom, we will measure in degrees Celsius (°C)
 - Most are made of glass so be careful. Do not stir with a thermometer.
- <u>*Glassware*</u> used to hold, pour, heat, and measure liquids.
 - Flasks, beakers, petri dishes, test tubes, and specimen jars are containers
 - Graduated cylinders measure liquids in milliliter (mL) or liter (L)
- <u>Compound microscope</u> observe small objects that you cannot observe with just your eyes (discuss more later in chapter one)
- <u>Computers</u> process information
 - Hardware monitors and keyboards
 - Software programs you run (word processing and spreadsheets)
- Tools used by Life Scientists
 - *Magnifying Lens* enlarges an image
 - <u>Slide</u> used in microscopes
 - *Dissecting tools* scalpels and scissors to examine prepared organisms
 - o <u>*Pipette*</u> similar to an eyedropper that is used to transfer liquids