Chapter: Naming Section One: Introduction to Chemical Names and Formulas

General rules to naming and writing formula.

- Electronegativity helps determine which ion is labeled first in binary compounds
- Binary compounds: compounds composed of two different elements
 - Cation is written first
 - Lower electronegative value
 - Written as its normal name
 - Positive (+) ion
 - Anion is written second
 - Higher electronegative value
 - Written with the ending *–ide*
 - Negative (-) ion
 - Aluminum oxide...Al₂O₃

Formula Unit: the simplest ratio of cations and anions

- $Al_2(SO_4)_3$
- $2 Al^{+3}$ and $3 SO_4^{-2}$

Monatomic ions: ions formed from a single atom

- Naming Monatomic ions
 - Cation is written normally as its name
 - \circ K⁺...Potassium cation
 - \circ Sodium = Na⁺
 - \circ Magnesium = Mg⁺²
 - Anion is written with the ending *–ide*
 - \circ F⁻...Fluoride anion
 - \circ Oxide = O⁻²
- *d*-block and *p*-block metals can form several cations
 - Stock system: naming chemical ions with Roman numerals
 - Metals in the d-/p-block
 - Roman numerals are used to identify an ion's charge
 - Written immediately after the metal's name
 - $Fe^{+2} = iron (II)$
 - \circ Fe⁺³ = iron (III)
 - Copper (I) = Cu^+ and Copper (II) = Cu^{+2}

One $(1) = I$	Two $(2) = II$	Three $(3) = III$
Four $(4) = IV$	Five $(5) = V$	Six(6) = VI
Seven $(7) = VII$		

Polyatomic ions: Ions that form from many atoms

Oxyanions: polyatomic ions composed of an element, usually a nonmetal, bonded to one or more oxygen atoms

- Negative ions
- The most common ion is given the ending *-ate*
 - The greatest number of oxygen atoms
- The ion with one less oxygen atom is given the ending *-ite*
- Sometimes two elements form more than two different oxyanions
 - One less oxygen is given the ending -*ite* and the prefix hypo-
 - One more oxygen atom is given the ending -ate and the prefix per-
- Hypochlorite = ClO⁻
- Chlorite = ClO_2^-
- Chlorate = ClO_3^-
- Perchlorate = ClO_4^-

Naming Binary compounds:

- Named by the newer system of the Stock System metal and nonmetal
 Roman numerals
- Named by the older system of prefixes nonmetal and nonmetal

1 = mono	2 = di	3 = tri	4 = tetra	5 = penta
6 = hexa	7 = hepta	8 = octa	9 = nona	10 = deca

- The rules for naming molecular compounds by the older system is
 - The less electronegative element is written first
 - The second element is written with the ending *-ide*
 - The prefix mono- is only used on the second element and all other prefixes are used for every element
 - The "o" and "a" are dropped off the prefix is the element begins with a vowel

Acid: distant type of molecular compound

- Binary acids: acids consisting of two element, usually hydrogen and one halogen
- Oxyacids: acids that contain hydrogen, oxygen, and a nonmetal/polyatomic ion

Salt: an ionic compound composed of a cation and the anion from an acid

Some salts contain hydrogen...they are named either by adding the word *hydrogen* to the name or the prefix *bi*- to the anion name