Chapter Ten: Energy, Work, and Simple Machines Section 1: Energy and Work

Work: (symbol W)

- Means to do something that takes physical or mental effort
- According to physics, work is done when a force is applied through a displacement
- W = F*d
 - o Force is constant
 - Label for work is N*m = Joule
 - SI unit for work
 - Named after the physicist James Prescott Joule
- The application of a force alone does not constitute work
 - Force and displacement need to be in the same direction (+work) or in opposite directions (-work)

- A force applied perpendicular to the direction of motion does not constitute work being done to the system
 - Ex. You are in an airplane flying west. You push down on your seat. You are not doing work on

the airplane (system). You are doing work on yourself.

• Any force applied at an angle needs to be broken down into its x- and y-components.

- o Work (angle between force and displacement):
 - $W = F*d*\cos\theta$
 - $F_{pull} = 50 N$

$$\circ F_{xpull} = \cos(30^{\circ}) * 50 N = 43.3 N$$

$$\circ F_{ypull} = \sin(30^{\circ}) * 50 N = 25N$$

- $W = F_{xpull} * d = 1299 J$
- Equal to the component of the force in the direction of the displacement, multiplied by the distance moved
- When several forces are exerted on a system, calculate the work done by each force and add the results.

Energy (symbol E): the ability of an object to produce a change in itself or the world around it

- Ability to do work.
 - Transferred from one form to another doing work in the process
- Label for energy is the Joule (J)
- Work-energy Theorem
 - When work is done on a system, the result is a change in the system's energy
 - $O W = \Delta E = \frac{1}{2} m v_f^2 \frac{1}{2} m v_i^2$
 - If the external world does work on a system, then work is positive and the energy of the system increases.
 - If a system does work on the external world, then work is negative and the energy of the system decreases.

Kinetic Energy: (symbol KE)

- The energy of an object that is due to the object's motion
- Equal to half the mass of the object times its velocity squared
- translational kinetic energy energy due to changing position
- $KE = \frac{1}{2} \text{ mv}^2$
- SI unit of energy is the Joule

$$0.1 J = 1 N*m = 1 kg*m2/s2$$

Power (symbol P):

- The rate at which work is done or energy is transformed
- $P = \Delta Energy/time = \Delta E/t$
- Measured in watts
 - \circ 1 W = 1J/s
 - \circ Often measured in kW (1000 W = 1 kW)
- Another way to calculate power
 - \circ P = Force x velocity = F*v
 - \circ P = voltage x current = V*I (from Adv. Science)

Work (W)	N*m = J
Energy (E)	$kg*m^2/s^2 = J$
Power (P)	J/s = Watt(W)

Roughrider electric (for example) uses kilowatt*hours to determine your energy consumption.

- kWh = measures how much energy you use
- Amount of energy you use by keeping a 1000 W appliance running for 1 hour.
- Average household uses 867 kWh per month.
- Watt is measured per unit of time so you need to multiply by time to find energy.