
Chapter 4: Work and Energy Section 1: Work and Machines

Work means to do something to earn money

Work: (symbol W)

- According to physics, work is done when a force is applied through a distance
- W = F^*d
 - Force is constant
 - \circ Label for work is N*m = Joule
 - SI unit for work
- The application of a force alone does not constitute work
 - Force and distance need to be in the same direction (+work) or in opposite directions (-work)
 - $\circ\,$ Force and distance need to be parallel to each other

- A force applied perpendicular to the direction of motion does not constitute work being done to the system
 - Ex. You are in an airplane flying west. You push down on your seat. You are not doing work on the airplane (system). You are doing work on yourself.

Machine: a device that makes tasks easier by changing either the magnitude or the direction of the applied force

• Changes the forces or increases the motion from work

Simple machines: a machine that does work with only one movement of the machine

- 6 types of simple machines:
 - o Lever
 - o Pulley
 - Wheel and axle
 - Inclined plane
 - o Screw
 - o Wedge

Compound machine: a combination of two or more simple machines

• Examples include a pair of scissors or a bicycle

Efficiency: ratio of output work to input work

- Measured in percent
- You put more work into a machine than you get out of the machine
 - Fundamental scientific law that cannot be broken by building better machine
- Efficiency (%) = <u>output work (in joules)</u> x 100 input work (in joules)
- You can make machines more efficient by reducing friction (adding a lubricant)
- All machines are less than 100% efficient

Machines are useful

- Increase speed
 - You can travel more quickly by riding a bicycle than on foot.
- Change the direction of force
 - An ax changes the downward force of the ax to the outward forces that split the wood sideways.

- Increase force
 - A car jack increases force but decreases speed.
 - Your force on the jack is less than the force exerted by the jack even though you have a greater distance to push compared to the distance the car is raised.
 - Mechanical advantage: the ratio of the output force to the input force
 - mechanical advantage (MA) = <u>ouput force (in Newtons)</u> input force (in Newtons)
 - The output force is the force that the machine applies to another object
 - The input force is the force a person applies to the machine
 - Mechanical advantage of the car is greater than one

