Chapter 4: Work and Energy

Section 1: Work and Machines

Work means to do something to earn money
Work: (symbol W)

- According to physics, work is done when a force is applied through a distance
- $\mathrm{W}=\mathrm{F}^{*} \mathrm{~d}$
- Force is constant
- Label for work is $\mathrm{N} * \mathrm{~m}=$ Joule
- SI unit for work
- The application of a force alone does not constitute work
- Force and distance need to be in the same direction (+work) or in opposite directions (-work)
- Force and distance need to be parallel to each other

- A force applied perpendicular to the direction of motion does not constitute work being done to the system
- Ex. You are in an airplane flying west. You push down on your seat. You are not doing work on the airplane (system). You are doing work on yourself.

Machine: a device that makes tasks easier by changing either the magnitude or the direction of the applied force

- Changes the forces or increases the motion from work

Simple machines: a machine that does work with only one movement of the machine

- 6 types of simple machines:
- Lever
- Pulley
- Wheel and axle
- Inclined plane
- Screw
- Wedge

Compound machine: a combination of two or more simple machines

- Examples include a pair of scissors or a bicycle

Efficiency: ratio of output work to input work

- Measured in percent
- You put more work into a machine than you get out of the machine
- Fundamental scientific law that cannot be broken by building better machine
- Efficiency $(\%)=\frac{\text { output work (in joules) }}{\text { input work (in joules) }} \times 100$
- You can make machines more efficient by reducing friction (adding a lubricant)
- All machines are less than 100% efficient

Machines are useful

- Increase speed
- You can travel more quickly by riding a bicycle than on foot.
- Change the direction of force
- An ax changes the downward force of the ax to the outward forces that split the wood sideways.
- Increase force
- A car jack increases force but decreases speed.
- Your force on the jack is less than the force exerted by the jack even though you have a greater distance to push compared to the distance the car is raised.
- Mechanical advantage: the ratio of the output force to the input force
- mechanical advantage (MA) $=\frac{\text { ouput force (in Newtons) }}{\text { input force (in Newtons) }}$
- The output force is the force that the machine applies to another object
- The input force is the force a person applies to the machine
- Mechanical advantage of the car is greater than one

