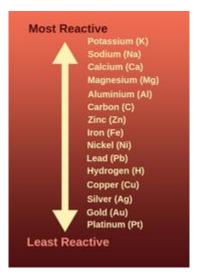
Chapter 19: Chemical Reactions Section 2: Classifying Chemical Reactions

5 Types of Chemical Reactions:

- **1. Combustion reaction:** occurs when a substance reacts with oxygen to produce energy in the form of heat and light.
 - a. **General Formula:** Carbon/Hydrogen Molecule + Oxygen → Carbon dioxide and water
 - b. Example: Methane gas reacts with oxygen gas to produce carbon dioxide gas and water

$$CH_4(g) + O_2(g) \rightarrow CO_2(g) + H_2O(1)$$

- **2. Synthesis reaction:** two or more substances combine to form one product.
 - a. General Formula: $A + B \rightarrow AB$
 - i. Requires the addition of light.
 - b. Example: Magnesium solid plus oxygen gas produces magnesium oxide solid


$$Mg(s) + O_2(g) \rightarrow MgO(s)$$

- **3. Decomposition reaction:** the reverse of a synthesis reaction in which one reactant breaks down, or decomposes, into two or more substances
 - a. General Formula: AB \rightarrow A + B
 - i. Requires the addition of heat, light, or electricity.
 - b. Example: Water in the presence of an electrical current will decompose into hydrogen gas and oxygen gas

$$H_2O(1) \rightarrow H_2(g) + O_2(g)$$

- **4. Single-displacement reaction:** the chemical reaction in which one element replaces another element in a compound
 - a. Sometimes called Single-replacement reactions.
 - b. General Formula: $A + BC \rightarrow AC + B$
 - c. Example: Copper solid reacts with silver (I) nitrate to produce copper (II) nitrate aqueous and silver solid

$$Cu(s) + AgNO_3(aq) \rightarrow Cu(NO_3)_2(aq) + Ag(s)$$

- d. More reactive metals will "replace" less active metals
- e. More reactive metals are generally found in nature as compounds while less reactive metals are found in nature as pure elements.
- **5. Double-displacement reaction:** the positive ion of one compound replaces the positive ion of the other to form two new compounds
 - a. Sometimes called double-replacement reactions.
 - b. Will produce a **precipitate:** an insoluble compound (solid) that comes out of solution during this type of reaction.
 - c. General Formula: $AB + CD \rightarrow AD + CB$
 - d. Example: Sodium hydroxide aqueous reacts with copper (II) chloride aqueous to produce sodium chloride aqueous and copper (II) hydroxide solid

NaOH (aq) + CuCl₂ (aq)
$$\rightarrow$$
 NaCl (aq) + Cu(OH)₂ (s)

- e. Oxidation-Reduction Reactions: the tendency of the substances involved to lose or gain electrons
 - *i.* **Oxidation:** the loss of electrons
 - 1. Becomes more positive and it is oxidized.
 - 2. Typically, the metal
 - ii. Reduction: the gain of electrons
 - 1. Becomes more negative and it is reduced.
 - 2. Typically, the nonmetal
 - *iii*. Reduction is the partner to oxidation. These two work as a pair so they are commonly referred to as a redox reaction.
 - *iv*. Iron solid plus oxygen gas produces iron (III) oxide solid commonly known as rust.

Fe (s) + O₂ (g)
$$\rightarrow$$
 Fe₂O₃ (s)

Fe went from a 0 charge to a +3 charge, so it lost 3 electrons, so it was oxidized.

O₂ went from a 0 charge to a -2 charge, so it gained 2 electrons, so it was reduced.