Chapter 19: Chemical Reactions Section 1: Chemical Changes

Chemical reaction: a change in which one or more substances are converted into new substances

- Reactants: the starting substances that react
- Products: the new substances produced
- Reactants \rightarrow Products

Remember law of conservation of mass

- Law of Conservation of Mass: in a chemical reaction the mass of all substances that are present before a chemical change equals the mass of all the substances that remain after the change
- mass is not gained or lost during any chemical reaction
- Reactants \rightarrow Products
- Reactants = Products
- When hydrogen reacts with chlorine, it produces hydrochloric acid. If 18 grams of hydrogen react with 633 grams of chlorine, how many grams of hydrochloric acid are formed?

Write the reactants and products below:
\qquad $+$ \qquad \rightarrow \qquad
Write the masses of the reactants and products below (put a ? for the unknown):
\qquad $+$ \qquad \rightarrow

Mass of hydrochloric acid = \qquad

Chemical equations: a way to describe a chemical reactions using chemical formulas and other symbols

Symbol	Meaning
\rightarrow	produces or yields
+	plus
(s)	solid
(l)	liquid
(g)	gas
(aq)	aqueous -a substance is dissolved in water
	reactants are heated
	reactants are exposed to an electric current

Example: silver nitrate aqueous reacts with sodium chloride aqueous to produce sodium nitrate aqueous and silver chloride solid

$$
\mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{NaCl}(\mathrm{aq}) \rightarrow \mathrm{NaNO}_{3}(\mathrm{aq})+\mathrm{AgCl}(\mathrm{~s})
$$

Balancing chemical equations

1. Write the formulas for the reactants and products
2. Balance the formula equation according to the law of conservation of mass
a. Coefficient: in a chemical equation, the number written in front of a reactant or product to represent the number of units of each substance in the reaction
i. When no coefficient appears before a substance, the coefficient of 1 is assumed. Otherwise, use numbers 2 and up to balance the equation
b. This will take trial and error
c. Simplify if needed
3. Count atoms to make sure the equation is balanced
a. Never change the subscripts on the formulas unless you wrote the formula wrong.
b. To get a balanced chemical equation, add coefficients in front of the substances. Don't split the substance in two. Either it goes in the front or doesn't go there at all.
4. Examples: (Label the parts of the equation once complete)
a. $\mathrm{NiCl}_{2}+\mathrm{NaOH} \rightarrow \mathrm{Ni}(\mathrm{OH})_{2}+\mathrm{NaCl}$
$\mathrm{Ni}=$
$\mathrm{Ni}=$
$\mathrm{Cl}=$
$\mathrm{Cl}=$
$\mathrm{Na}=$
$\mathrm{Na}=$
$\mathrm{OH}=$
$\mathrm{OH}=$
b. $\mathrm{HgO} \rightarrow \mathrm{Hg}+\mathrm{O}_{2}$
$\mathrm{Hg}=\quad \mathrm{Hg}=$
$\mathrm{O}=\quad \mathrm{O}=$
*Break for practice worksheets on balancing.
*Break for practice writing balanced chemical equations.
Understanding Chemical Equations

- Mole: the amount of a substance that contains 6.022×10^{23} particles of that substance
- 1 dozen of eggs = 12 eggs
- 1 mole of eggs $=6.022 \times 10^{23}$ eggs
- 1 mol of Substance $=6.022 \times 10^{23}$ representative particles
- Molar Mass: the mass in grams of one mole of a substance

Element	Number of Atoms Present	Molar Mass
Hydrogen	6.022×10^{23} atoms $/ 1 \mathrm{~mol}$	$1.01 \mathrm{~g} / 1 \mathrm{~mol}$
Carbon	6.022×10^{23} atoms $/ 1 \mathrm{~mol}$	$12.01 \mathrm{~g} / 1 \mathrm{~mol}$
Oxygen	6.022×10^{23} atoms $/ 1 \mathrm{~mol}$	$16.00 \mathrm{~g} / 1 \mathrm{~mol}$

- For compounds or molecules
- Label is \#g/1 mol Compound/Molecule
- Example Molar Mass of $\mathrm{H}_{2} \mathrm{O}$

Hydrogen $=\mathrm{H}=(2 \mathrm{~mol} \mathrm{H})(1.01$ gram $)=2.02$ grams H 1 mol

Oxygen $=0=(1 \mathrm{~mol} 0)(16.00$ gram $)=16.00$ grams 0
1 mol
Molar Mass of $\mathrm{H}_{2} \mathrm{O}=2.02 \mathrm{~g} \mathrm{H}+16.00 \mathrm{~g} \mathrm{O}=18.02$ grams $\mathrm{H}_{2} \mathrm{O}$ 1 mol

Atom/Compound/ Molecule	Atoms/Particles/ Molecules	moles	Mass (Molar Mass)
Fluorine (F)			
Calcium Fluoride $\left(\mathrm{CaF}_{2}\right)$			
Oxygen Difluoride $\left(\mathrm{OF}_{2}\right)$			

[^0]
[^0]: *Worksheet time!

