Chapter 18: Elements and Their Properties Section 3: Writing Formulas and Naming Compounds

Oxidation number: a positive or negative number that indicates how many electrons an atom has gained, lost, or shared to become stable

- Sodium atom
 - o 1 valence electron
 - o Lose 1 electron
 - \circ Sodium is +1 charge = Sodium ion = Na⁺¹
- Chlorine atom
 - o 7 valence electrons
 - o Gains 1 electron
 - \circ Chlorine is -1 charge = Chlorine ion = Cl⁻¹
- Fill in the periodic table with charges for groups 1-2 and 13-18
 - Take out your colored periodic tables
- Transition elements
 - These elements vary in the charge
 - To identify what the charge is, a roman numeral is placed after the element name in parentheses
 - Copper (I) = Cu^{+1}
 - Copper (II) = Cu^{+2}
 - Iron (II) = Fe^{+2}
 - Iron (II) = Fe^{+3}
- Break for worksheet!

Binary compounds: compounds composed of two elements

- Easiest to write formulas
- Remember the compound is neutral

 Each ion has an individual charge but added together the charge should be zero

Writing formulas (rules)

- The positive ion is ALWAYS written first
 - Tends to be the metals and Hydrogen
 - When written, just write the name
- The negative ion is ALWAYS written second
 - Tends to be the nonmetals
 - When written, it will end with the -ide ending
- Criss-cross just the numbers to write a formula
- Example: Sodium Chloride
 - Write the ions: Na⁺¹ Cl⁻¹
 - Criss-cross the numbers to make subscripts
 Na¹ Cl¹

Na₁ Cl₁

 Simplify and write the symbols together as one NaCl

• Example: Potassium Sulfide

• Write the ions:

$$K^{+1}$$
 S^{-2}

Criss-cross the numbers to make subscripts
 K¹ S²

 $K_2 \; S_1$

 Simplify and write the symbols together as one K₂S

- Example: Iron (II) Oxide
 - Write the ions: Fe⁺² O⁻²
 - Criss-cross the numbers to make subscripts
 Fe² Q²

 $Fe_2 \ O_2$

- Simplify and write the symbols together as one FeO
- Break for worksheet!

Naming compounds (rules)

- The positive ion is ALWAYS written first
 - Identify the metal where it is located on the periodic table
 - If it is a transition metal or metal under the stairstep line, a roman numeral will have to be written in parentheses
 - Write the name as it appears on the periodic table
- The negative ion is ALWAYS written second
 - Write the name as it appears but add the -ide ending
 - chlorine = chloride
 - oxygen = oxide
 - nitrogen = nitride
 - sulfur = sulfide

- Example: NaF
 - \circ Identify the metal = Na = No roman numeral needed
 - Na = sodium
 - \circ Identify the nonmetal = F
 - F = fluoride
 - Put the 2 together
 - sodium fluoride
- Example: Ca₃N₂
 - \circ Identify the metal = Ca = No roman numeral needed
 - Ca = Calcium
 - \circ Identify the nonmetal = N
 - N = nitride
 - Put the 2 together
 - calcium nitride
- Example: CuO
 - \circ Identify the metal = Cu = roman numeral needed
 - Copper has 2 charges Cu⁺¹ or Cu⁺²
 - Which one works? Look to the nonmetal.
 - \circ Identify the nonmetal = O
 - O = oxide = -2
 - Since there are no subscripts, copper has to be +2
 - copper (II) and oxide
 - Put the 2 together
 - copper (II) oxide
- Examples: Cu₂O, Cr₂O₃, Fe₂O₃, FeO

• Break for worksheet!

Compounds with polyatomic ions:

- Not all compounds are binary. Some have more than 2 elements. These use ions called polyatomic ions
 - **Polyatomic ion:** positively or negatively charged, covalently bonded group of atoms
 - ions contain two or more elements
 - prefix *poly* means many (more then 2)
 - *Hand out sheet
 - The good news! Writing formulas and names are similar to binary compounds
 - Just watch the ending on polyatomic ions
 - Polyatomic ions = end in -ite or -ate
 - need a parenthesis around the ion and the charge is a superscript
 - Monatomic (-) ions = end in -ide
- Break for worksheet using polyatomic vs. monatomic ions

• Writing formulas:

- The only difference between using polyatomic vs. binary is a parenthesis will have to be used
- Example: Sodium Chlorate
 - Write the ions Na⁺¹ (ClO₃)⁻¹
 - Criss-cross the numbers to make subscripts Na¹ (ClO₃)¹

 $Na_1 (ClO_3)_1$

 Simplify and write the elements together Na(ClO₃) = NaClO₃

*The parentheses are not needed since both are 1.

• Examples: Calcium carbonate, Iron (III) sulfate

- Writing names:
 - Follow the same rules for writing names for binary compounds for writing names with polyatomic ions
 - Examples: Mg₃(PO₄)₂, NaOH, Cr(ClO₂)₂, PbCO₃

• Break for worksheet!

Naming binary covalent compounds

- Occurs between 2 nonmetals
- Similar rules
 - The first nonmetal is written as its name (don't change the ending)
 - The second nonmetal is written with the -ide ending
 - \circ This time use prefixes

$mono = 1$ (only 2^{nd} nonmetal)	di = 2	tri = 3	tetra = 4
penta = 5	hexa = 6	hepta = 7	octa = 8
nona = 9	deca = 10		

- Different rules!
 - Do NOT criss-cross
 - Write the formula/name like you see it
 - There is no simplifying
- Example: Dihydrogen monoxide
 - \circ Dihydrogen = H₂
 - \circ monoxide = O₁
 - \circ Put together with subscripts = H₂O

- Example: Phosphorus trichloride
 - \circ Phosphorus = P
 - \circ trichloride = Cl₃
 - \circ Put together with subscripts = PCl₃
- Example: Disulfur dichloride
 - \circ Disulfur = S₂
 - \circ dichloride = Cl₂
 - \circ Put together with subscripts = S₂Cl₂ (don't simplify)
- Writing names from formulas
 - $\circ \ SF_6$
 - S = sulfur (no prefix for 1)
 - F₆ = hexafluoride
 - Put together with a small space between each nonmetal
 - Sulfur hexafluoride

o CO

- C = Carbon (no prefix for 1)
- O = monoxide (prefix for 1 because it is the 2nd element)
- Put together = Carbon monoxide

 $\circ \ CO_2$

- C = Carbon (no prefix for 1)
- O₂ = dioxide
- Put together = Carbon dioxide

• Put roman numerals on back of periodic table and prefixes

• Break for worksheet! We are done!