Chapter 16: Properties of Atoms and the Periodic Table

 Section 3: The Periodic TableThe term periodic means to repeat in a pattern.
Dmitri Mendeleev

- Late 1800 s, he presented a way to organize all the known elements
- He found the elements repeated a pattern according to the element's atomic mass
- He did rows for increasing atomic mass and columns of elements that shared similar physical and chemical properties
- This arrangement is defined as the periodic table

Henry Moseley

- He later finalized the periodic table to arrange by increasing atomic number
- This is the modern-day periodic table

Periodic table: the elements are arranged by increasing atomic number, not atomic mass, and by periodic changes in physical and chemical properties

Periods: the horizontal rows of elements

- 7 periods

Groups: the vertical columns of elements

- 18 groups
- Also called families

Energy levels - electrons have different amounts of energy as you go out from the nucleus

- Think of it as rungs on a ladder
$\circ 1^{\text {st }}$ rung has low GPE but the $4^{\text {th }}$ rung has high GPE
- Periods: similar energy levels
- Groups: increases in energy levels
- Electron configuration diagrams
- Level 1 = holds 2 electrons
- Level 2 = holds 8 electrons
- Level 3 = holds 18 electrons
- Level 4 = holds 32 electrons
- Start with finding the number of protons \& electrons
- Put the symbol in the middle
- Following the levels above, fill in with dots around the symbol
- Fill until you are out of electrons
- Examples:

Hydrogen

Helium

Carbon

Fluorine

Valence electrons (ve): electrons in the outermost energy level

- Max number of valence electrons equals 8
- These are the electrons used in bonding between atoms
- Looks at the electrons in Groups 1-2 and 13-18 as these elements are in the outermost energy level
- Group $1=1 \mathrm{ve}^{-}$
- Group $2=2$ ve $^{-}$
- Group $13=3 \mathrm{ve}^{-}$
- Group $14=4 \mathrm{ve}^{-}$
- Group $15=5 \mathrm{ve}^{-}$
- Group $16=6 \mathrm{ve}^{-}$
- Group $17=7 \mathrm{ve}^{-}$
- Group $18=8$ ve $^{-}$
- Electron dot notation: uses the chemical symbol of an element surrounded by dots to represent the number of electrons in the outermost energy level
- Similar to electron configuration diagrams but this time you only have 4 sides that contain 2 electrons (dots) each
- Start with a single dot on the top
- Fill each of the 4 -sides with single dots then double up
- Hydrogen
- Helium
- Carbon
- Fluorine

Regions of the periodic table

- Metals
- solid at room temperature
- Shiny
- Drawn into wires
- Pounded into sheets
- Good conductors of heat and electricity
- Nonmetals
- Gases at room temperature or brittle solids
- Poor conductors of heat and electricity
- Metalloids
- Exhibit properties of metals and nonmetals
- Boron, Silicon, Germanium, Arsenic, Antimony, Tellurium, Polonium, and Astatine

