Chapter 15: Classification of Matter Section 2: Properties of Matter

Physical vs. Chemical properties

- Physical - characteristic of a material that can be observed without changing the matter or the identity of the substance
- Ex. color, shape, size, melting and boiling points, and density
- Iron is magnetic
- Viscosity, the resistance to flow, is a physical property of liquids
- Compare cold syrup to room temperature water
- Chemical - characteristics that describe something's ability to become something new
- Sodium is highly reactive while silver is not
- Flammability of a substance is a chemical property

Physical change: change that alters the form or appearance of matter but does not turn any substance in the matter into a different substance

- Change of state - solid to a liquid to a gas or vice versa
- Solid - definite shape and volume
- Liquid - definite volume but not a definite shape
- Gas - doesn't have a definite shape or volume
- Separation examples
\circ Distillation: separating a solution (solid-liquid or 2 liquids) and then condensing one of the liquids into a different container
- Salt-water can be separated by boiling the water and then condensing the water into a different container
- Filtration: separating a solid from a liquid
- Coffee filters
- Crystallization: separating a solid out from a hot solution
- Rock candy
- Chromatography: separation of liquids using chromatography paper and some type of alcohol allowing the liquid to travel "up"

Chemical change: a change in matter that produces one or more new substances

- Also called a chemical reaction
- Evidence of chemical change
- Tarnishing - silverware
- Oxidation - vehicle left in the elements will rust
- Light or an object starts on fire (combustion) magnesium burns bright
- Bubbles are created - baking soda and vinegar
- Heat is produced or taken away (making it cold)
- baking soda and vinegar
- Change of color

Law of conservation of mass: mass is not created or destroyed in any chemical or physical change

- mass of the reactants = mass of the products
- Reactants \rightarrow Products
- Reactants $=$ substances before the reaction
- Products = substances after the reaction
- Example problem
- If 5.0 grams of hydrogen and 5.0 grams of oxygen are used to make water, how many grams are made?
- Hydrogen + Oxygen \rightarrow Water $5.0 \mathrm{~g} \quad 5.0 \mathrm{~g}$?

