## The Structure of DNA



## **Nucleotide Structure**

4 macromolecules – protein, carbs, lipids, nucleic acids

•DNA is made up of nucleotides joined into long strands or chains by covalent bonds.

Nucleic acids are made up of building blocks called nucleotides.



### **Nitrogenous Bases**



### **Nucleic Acid Structure**



One nucleotide

## **Chargaff's Rule**

- Erwin Chargaff, biochemist, discovered the percentages of adenine and thymine were almost equal in a sample of DNA
- The same was true for guanine and cytosine
- [A] = [T] and [C] = [G]
- Scientists showed that DNA samples from other organisms obeyed this rule.



# Franklin's X-rays

- Rosalind Franklin, British scientist, studied DNA
  - •Used a technique called X-ray diffraction to study the structure.
  - •The X-shaped pattern didn't reveal every detail but shows that the strands in DNA are twisted around each other like the coils of a spring. DNA is a helix.
  - Likely two strands to the molecule
  - •Nitrogenous bases near the center of the molecule





- X-Ray photo
  known as photo
  51
- Dark spots are nitrogenous bases stacked at regular intervals

### The Work of Watson and Crick

- James Watson, American biologist and Francis Crick, British physicist were trying to understand the structure of DNA
- The data in Franklin's X-ray pattern enabled Watson and Crick to build a model that explained the specific structure and properties of DNA
- DNA is a double helix, in which two strands of nucleotide sequences are wound around each other.



## **The Double Helix: Antiparallel Strands**

The double-helix model explains Chargaff's rule of base pairing and how the two strands of DNA are held together.



The two strands in a DNA molecule run in opposite directions.

The two strands are said to be antiparallel.

Enables the nitrogenous bases on both strands to come into contact near the center.

## **The Double Helix: Hydrogen Bonding**

- Hydrogen bonds hold the two strands of DNA together
- Relatively weak bonds
- If the two strands were held together by stronger bonds, it would be impossible to separate, which is critical to DNA's functions.



### **The Double Helix: Base Pairing**

The two strands of DNA are held together by hydrogen bonds between the nitrogenous bases adenine and <u>thymine</u> and between guanine and <u>Cytosine</u>.

