The Work of Gregor Mendel

- Inheritance:
 - Money or property left by relatives
 - Something we receive from our parents (like blood type, color of our eyes or hair)
- **Genetics:** the scientific study of biological inheritance
- Gregor Mendel:
 - Austrian scientist and priest
 - He worked in a monastery and taught local students
 - He also worked in the monastery garden and changed biology forever
 - He worked with peas because they are small, easy to grow, and can produce hundreds of offspring

Mendel's Experiments

•Fertilization: a process in which during sexual reproduction, male and female reproductive cells join to produce a new cell

•Male reproductive cells are called sperm

Female reproductive cells are called eggs

Pea plants are mostly self-pollinating

Reproduce from the same flower

 Started with "true breeding" plants – meaning the pea plants were self-pollinating and produced offspring with traits identical to the parents

•**Trait:** specific characteristic (e.g., seed color, plant height) of an individual

Pollination in Pea Plants

•Mendel crossed his stocks of true-breeding plants

- •He dusted pollen from a different plant onto the female part of a flower
- •This allowed Mendel to cross plants with different traits and then study the results.
- Mendel examined 7 different traits of pea plants
 - •For example, green or yellow pod color

Cross-Pollination and Pea Characteristics

- Mendel crossed plants with each of the 7 contrasting characteristics and then studied the offspring.
- The offspring's were a hybrid of the parents.
- Hybrid: created from a cross of true-breeding individuals

Seed	Seed	Flower	Pod	Pod	Flower	Plant
Shape	Color	Color	Shape	Color	Position	Height
Round	Yellow	Purple	Smooth	Green	Axial	Tall
X	X	X	X	X	X	X
Wrinkled	Green	White	Constricted	Yellow	Terminal	Short

Genes and Alleles

- When doing genetic crosses, the original pair of plants are called P, or parental, generation.
- Their offspring are called the F_1 , or first filial, generation
 - Filius and filia are Latin for "son" and "daughter"
- To Mendel's surprise, the offspring had the characteristics of only one of its parents.
 - The traits of the other parent seemed to have disappeared.
 - From this, Mendel proposed 2 conclusions.
 - An individual's characteristics are determined by factors that are passed from one parental generation to the next (we call these factors genes)
 - Some alleles are dominant and some alleles are recessive

Genes and Alleles

- **Genes:** passed from one generation to the next; determine an individual's characteristics (seed shape)
- **Alleles:** the different forms of a gene (round or wrinkled)

Principle of Dominance

- Some alleles are dominant, some recessive.
- An organism with at least one dominant allele will exhibit that trait.
- An organism with a recessive allele will exhibit the trait only in the absence of a dominant allele.
- Mendel found the allele for tall plants was dominant over the recessive allele for short plants.
- The allele for green pods was dominant over the recessive allele for yellow pods.

Mendel's F₁ Crosses

When Mendel crossed plants with contrasting traits, the hybrid offspring showed traits of only one parent.

Mendel's Seven F ₁ Crosses on Pea Plants											
	Seed	Seed	Flower	Pod	Pod	Flower	Plant				
	Shape	Color	Color	Shape	Color	Position	Height				
Ρ	Round	Yellow	Purple	Smooth	Green	Axial	Tall				
	X	X	X	X	X	X	X				
	Wrinkled	Green	White	Constricted	Yellow	Terminal	Short				
F ₁	↓ O Round	↓ Vellow	↓ Ø Purple	↓ Smooth	↓ Green	Axial	Tall				

Segregation

Segregation: separation of alleles during gamete formation

- The allele of the yellow pod separated from the allele for the green pod
- **Gametes:** the formation of reproductive cells
- During gamete formation, the alleles for each gene segregate from each other, so that each gamete carries only one allele for each gene
- Thus, a green pod allele and yellow pod allele were produced

The F₂ Generation

What proportion of F_2 offspring were yellow?

What proportion of F_2 offspring were green?

3/4

1/4

The Formation of Gametes

The Formation of Gametes

- A capital letter represents a dominant allele.
- A *lowercase* letter represents a *recessive* allele.
- In order for a yellow pod to reappear, each gamete had to provide a "g" allele.
- In order for a green pod to appear, one of the gametes had to have a "*G*" allele.