Chapter 11: Cell Growth \& Division Lesson 2: The Process of Cell Division

Onion cells undergoing mitosis

Cell division

- Small children grow larger every year.
- A broken bone or cut on the skin come from your body going through cell division to heal your ailments.
- Red blood cells live for about 4 months in your circulatory system then get replaced with new cells.
- Daily wear and tear of your skin are replaced daily by new cells through cell division.

Chromosomes

- The first thing that happens before cell division is the cell makes a complete copy of its genetic information
- Chromosomes: threadlike structure of DNA and protein that contains genetic information
- Bundled packages of DNA
- In eukaryotes, chromosomes are found in the nucleus
- In prokaryotes, chromosomes are found in the cytoplasm

Chromosomes

- Remember, prokaryotic cells lack a membrane-bound nuclei where the DNA should be located.
- In prokaryotic cells, DNA is packaged into a single, circular chromosome.
- Think of it in terms of a 300-m rope stuffed into your school backpack.

Chromosome

Chromosomes

- In eukaryotic cells, there is generally more DNA and multiple chromosomes
- Fruit flies $=8$ chromosomes
- Humans = 46 chromosomes
- In eukaryotic cells, the DNA is tightly bound to proteins called histones. This complex DNA and protein is referred to as chromatin
- Chromatin: substance found in eukaryotic chromosomes that consists of DNA tightly coiled around histones
- The " X " shape you see in textbooks is actually a duplicated chromosome with supercoiled chromatin

Chromosomes

In eukaryotic cells, DNA is packaged into multiple chromosomes.

Prokaryotic Cell Cycle

- Cell Cycle: series of events in which a cell grows, prepares for division, and divides to form two daughter cells
- Prokaryotes undergo binary fission a form of asexual reproduction
- Takes place very rapidly
- Scientists are just beginning to understand how the cycle works
- DNA is replicated (copied) and the cell divides
- Binary fission results in two genetically identical cells.

Eukaryotic Cell Cycle

- Eukaryotic cells have a more complex cell cycle than prokaryotic cells.
- Interphase: period of the cell cycle between cell divisions
- Eukaryotic cell cycle has 4 stages:
$\mathrm{G}_{1}, \mathrm{~S}, \mathrm{G}_{2}$, and M
- G_{1} and G_{2} - the " G " stands for gap - periods of intense growth
- S - the "S" stands for synthesis
- Cells do most of their growing
 during the G_{1} phase
- At the end of the S phase, the cell contains twice as much DNA
- G_{2} is the shortest phase and many molecules are produced

M Phase

- Cell division occurs during M phase.
- 2 daughter cells are produced here
- "M" stands for mitosis
- Mitosis: part of eukaryotic cell division during which the cell nucleus divides
- $1^{\text {st }}$ stage
- Cytokinesis: division of the cytoplasm to form two separate daughter cells
- $2^{\text {nd }}$ stage
- Can last from a few minutes to several days

Prophase

- The nucleus condenses and chromosomes become visible. The spindle begins to form.
- Prophase: first and longest phase of mitosis in which the genetic material inside the nucleus condenses and the chromosomes becomes visible
- Chromatids: one of two identical "sister" parts of a duplicated chromosome
- Centromere: region of a chromosome in which the two sister chromatids attach
- Centrioles: structure in an animal cell that helps to organize cell division
- The centrioles move towards opposite ends, or poles
- Plant cells lack these

Metaphase

- Chromosomes line up at the center of the cell.
- Metaphase: phase of mitosis in which the chromosomes line up across the center of the cell

Anaphase

- Chromosomes move toward opposite poles.
- Anaphase: phase of mitosis in which the chromosomes separate and move along spindle fibers to opposite ends of the cell

- Anaphase comes to an end when the movement stops, and the chromosomes are separated into two groups
individual
chromosomes

Telophase

- The cell begins to divide into daughter cells.
- Telophase: phase of mitosis in which the distinct individual chromosomes begin to spread out into a tangle of chromatin
- Nuclear envelope reforms around each cluster of chromosomes
- Mitosis is complete!

Cytokinesis

- Cytokinesis usually occurs at the same time as telophase
- Completes the process of cell division by dividing one cell into two
- In animal cells, the cell membrane pinches in the center to form two daughter cells.
- In plant cells, the cell membrane is not flexible enough because of the cell wall. Instead, a cell plate forms halfway between the divided nuclei
- The cell plate develops into the cell membrane.

Mitosis Overview

