Chapter 11: Cell Growth & Division Lesson 2: The Process of Cell Division

Onion cells undergoing mitosis

Cell division

- Small children grow larger every year.
- A broken bone or cut on the skin come from your body going through cell division to heal your ailments.
- Red blood cells live for about 4 months in your circulatory system then get replaced with new cells.
- Daily wear and tear of your skin are replaced daily by new cells through cell division.

- The first thing that happens before cell division is the cell makes a complete copy of its genetic information
- Chromosomes: threadlike structure of DNA and protein that contains genetic information
 - Bundled packages of DNA
 - In eukaryotes, chromosomes are found in the nucleus
 - In prokaryotes, chromosomes are found in the cytoplasm

- Remember, prokaryotic cells lack a membrane-bound nuclei where the DNA should be located.
- In prokaryotic cells, DNA is packaged into a single, circular chromosome.
- Think of it in terms of a 300-m rope stuffed into your school backpack.

- In eukaryotic cells, there is generally more DNA and multiple chromosomes
 - Fruit flies = 8 chromosomes
 - Humans = 46 chromosomes
- In eukaryotic cells, the DNA is tightly bound to proteins called histones. This complex DNA and protein is referred to as chromatin
 - Chromatin: substance found in eukaryotic chromosomes that consists of DNA tightly coiled around histones
 - The "X" shape you see in textbooks is actually a duplicated chromosome with supercoiled chromatin

In eukaryotic cells, DNA is packaged into multiple chromosomes.

Prokaryotic Cell Cycle

- **Cell Cycle:** series of events in which a cell grows, prepares for division, and divides to form two daughter cells
- Prokaryotes undergo binary fission a form of asexual reproduction
- Takes place very rapidly
- Scientists are just beginning to understand how the cycle works
- DNA is replicated (copied) and the cell divides
- Binary fission results in two genetically identical cells.

Eukaryotic Cell Cycle

- Eukaryotic cells have a more complex cell cycle than prokaryotic cells.
- Interphase: period of the cell cycle between cell divisions
- Eukaryotic cell cycle has 4 stages: G₁, S, G₂, and M
 - G₁ and G₂ the "G" stands for gap – periods of intense growth
 - S the "S" stands for synthesis
 - Cells do most of their growing during the G₁ phase
 - At the end of the S phase, the cell contains twice as much DNA
 - G₂ is the shortest phase and many molecules are produced

M Phase

- Cell division occurs during M phase.
 - 2 daughter cells are produced here
- "M" stands for mitosis
 Mitosis: part of eukaryotic cell division during which the cell nucleus divides
 - 1st stage
- Cytokinesis: division of the cytoplasm to form two separate daughter cells
 - 2nd stage
- Can last from a few minutes to several days

Prophase

- The nucleus condenses and chromosomes become visible. The spindle begins to form.
- Prophase: first and longest phase of mitosis in which the genetic material inside the nucleus condenses and the chromosomes becomes visible
- **Chromatids:** one of two identical "sister" parts of a duplicated chromosome
- **Centromere:** region of a chromosome in which the two sister chromatids attach
- **Centrioles:** structure in an animal cell that helps to organize cell division
 - The centrioles move towards opposite ends, or poles
 - Plant cells lack these

Metaphase

- Chromosomes line up at the center of the cell.
- Metaphase: phase of mitosis in which the chromosomes line up across the center of the cell

Anaphase

- Chromosomes move toward opposite poles.
- Anaphase: phase of mitosis in which the chromosomes separate and move along spindle fibers to opposite ends of the cell

 Anaphase comes to an end when the movement stops, and the chromosomes are separated into two groups

individual chromosomes

Telophase

- The cell begins to divide into daughter cells.
- **Telophase:** phase of mitosis in which the distinct individual chromosomes begin to spread out into a tangle of chromatin
- Nuclear envelope reforms around each cluster of chromosomes
- Mitosis is complete!

Cytokinesis

- Cytokinesis usually occurs at the same time as telophase
- Completes the process of cell division by dividing one cell into two
- In animal cells, the cell membrane pinches in the center to form two daughter cells.
- In plant cells, the cell membrane is not flexible enough because of the cell wall. Instead, a cell plate forms halfway between the divided nuclei
 - The cell plate develops into the cell membrane.

Mitosis Overview

Mitosis

The phases of mitosis shown here are typical of animal cells. These light micrographs are from a developing whitefish embryo &M415x0.

Interphase A

The cell grows and replicates its DNA and centrioles.

< Cytokinesis

The cytoplasm pinches in half. Each daughter cell has an identical set of duplicate chromosomes.

Telophase

The chromosomes gather at opposite ends of the cell and lose their distinct shapes. Two new nuclear envelopes will form.

Prophase >

The chromatin condenses into chromosomes. The centricles separate, and a spindle begins to form. The nuclear envelope breaks down.

Metaphase **V**

The chromosomes line up across the center of the cell. Each chromosome is connected to spindle fibers at its centromere.

Anaphase V The sister chromatids separate

into individual chromosomes and are moved apart.